
GETTING STARTED
WITH PRODUCT
EXPERIMENTATION
How Product Development Teams Reduce
Guesswork and Innovate Faster

KEY DISCUSSION POINTS:
How experimentation fits in with other initiatives

 at your company, such as Agile

 Best practices for integrating experimentation
 into your release process

 Key considerations when buying an
 experimentation solution

 Ways to optimize performance and ensure
 security and compliance

MOVING FROM AGILE TO
EXPERIMENTATION-DRIVEN
DEVELOPMENT

PUTTING EXPERIMENTATION
AT THE CORE OF YOUR
RELEASE PROCESS

CHOOSING THE RIGHT
EXPERIMENTATION
PLATFORM

ENSURE
SECURITY AND
PERFORMANCE

MOVING FROM AGILE TO
EXPERIMENTATION-DRIVEN

DEVELOPMENT

DURING THE PAST 20 YEARS, THE PROCESS OF DEVELOPING AND
RELEASING SOFTWARE HAS UNDERGONE A SIGNIFICANT EVOLUTION.

MOVING FROM AGILE TO
EXPERIMENTATION-DRIVEN
DEVELOPMENT

3

Many companies are moving beyond the lengthy, top-down
release cycles driven by boxed software to an iterative release
process driven by the rapid innovation of software running on
internet-connected devices. Teams are embracing principles
such as Agile, Lean, DevOps, and Continuous Development
to ship quality software faster. In fact, Agile is now the norm:
94% of companies report that all or some of their development
teams currently use Agile.

Many have also migrated from monolithic applications to
microservices architectures. By breaking up applications
into multiple services and shipping smaller changes more
frequently, software teams mitigate risks and become more
responsive to their customers’ evolving requirements.

The resulting feedback helps teams learn and iterate on their
designs more rapidly. By incorporating automated testing
along with Agile and DevOps, teams already accelerate
development, uncover product bugs, and leverage
opportunities to improve performance. Yet, no matter how
reliable and performant software is, it must also deliver real
value to end users and customers faster and better than any
other product. That’s where experimentation driven-product
development comes in.

 THE ULTIMATE GOAL IS TO GET QUALITY
PRODUCTS INTO CUSTOMERS’ HANDS FASTER.

http://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
http://martinfowler.com/articles/microservices.html

Put simply, experimentation helps development teams
determine if they’re building the right product. By adopting
experimentation, teams eliminate uncertainty and guesswork
from their software development process. By exposing new
versions of software to a portion of customers while the
remainder continue with the original experience, teams
can quickly assess if their new updates are improvements
or regressions. Experimentation, in essence, becomes
the feedback loop through which teams determine if their
products are impacting customers in a positive way.

Companies that adopt agile development and build out
robust testing and QA processes, yet neglect to experiment
at scale, are not getting the most out of their software
development process. To perform at a high level, software
creators can’t simply optimize the performance and reliability
of their products. They must optimize the actual benefits of
their software as well. Without sufficient experimentation,
however, they won’t have adequate information at hand to
make the best product decisions possible. The good news
is, every software organization—including those now A/B
testing in an ad hoc manner—can take key steps to expand
their experimentation capabilities and strengthen their
software development process.

 EXPERIMENTATION BECOMES THE
FEEDBACK LOOP THROUGH WHICH TEAMS
DETERMINE IF THEIR PRODUCTS ARE
IMPACTING CUSTOMERS IN A POSITIVE WAY.

4

MOVING FROM AGILE TO
EXPERIMENTATION-DRIVEN
DEVELOPMENT

Settling Debates
With Experimentation

5

Often, smart people on product development teams will
have differing opinions on the value of a new feature, or
on which version of that feature will be most impactful.
Consequently, teams will launch features based on
intuition. The trouble is, common sense solutions aren’t
always the best ones. Even well-researched products can
suffer due to the gap between what customers think they
want and what their behaviors reveal they actually want.

Here’s one example. Tripping.com, a metasearch site for
vacation rentals, embraces experimentation-driven product
development. Customers search rentals on their site, then
they click through to third-party sites to make purchases.

Tripping.com hypothesized that by adding an intermediary
listing page with more content, they could generate more
revenue. This would be a counterintuitive change, however,
since it would add friction to the conversion process.
Nevertheless, they ran an experiment to see if it would
impact bookings.

While the experiment showed a 3% decrease in clicks to
3rd-party sites, it also resulted in a 5% increase in revenue.
The experiment confirmed their hypothesis. Without
experimentation, it’s unlikely their team would have
been willing to bet on this hunch.

Some of the most revolutionary new products and
features were originally controversial, or counterintuitive.
Experimentation transforms the need for debate into an
opportunity for discovery. With it, teams can now evaluate
ideas and make decisions based on real, usable data.

When Optimizely founder Dan Siroker was a new project
manager at Google, a mentor of his offered this advice on
a controversial product launch: “Don’t frame it as a
product launch. Just frame it as an experiment.” Once
he did that, he experienced far less resistance to his idea.

 EVEN WELL-RESEARCHED PRODUCTS
CAN SUFFER DUE TO THE GAP BETWEEN
WHAT CUSTOMERS THINK THEY WANT AND
WHAT THEIR BEHAVIORS REVEAL THEY
ACTUALLY WANT.

MOVING FROM AGILE TO
EXPERIMENTATION-DRIVEN
DEVELOPMENT

PUTTING EXPERIMENTATION AT THE
CORE OF YOUR RELEASE PROCESS

Integrating experimentation into the software development process helps teams launch better products. Industry leaders
like Google, Facebook, Microsoft, and Amazon all run thousands of experiments each year. They’ve scaled and managed
their businesses, constantly adapting to challenges from new entrants, by using experimentation as a core part of their
product development process. Today’s software development teams can benefit from implementing the best practices
employed by these powerhouses. In this section, we discuss three key principles for making experimentation a core part
of the release process.

PUTTING EXPERIMENTATION
AT THE CORE OF YOUR
RELEASE PROCESS

7

Choose the right metrics THE “NORTH STAR METRIC” (NSM) IS
THE SINGLE MOST IMPORTANT METRIC
THAT CAPTURES THE VALUE YOU DELIVER
TO YOUR CUSTOMERS.

The most important step before launching an experiment is
agreeing on the metrics to measure. Metrics allow teams to
define the success of their experiments. Typical metrics differ
by industry, but are often based on conversion, retention,
or lifetime value. Businesses with longer conversion cycles
and higher customer LTV—mortgage lenders or furniture
retailers, for example—will likely want to choose some
metrics that are measurable in real-time, and some that
indicate longer-term success.

Another essential step is to zero in a North Star Metric
(NSM)—the single metric that best captures the value a
company delivers to its customers. Using product analytics
and research is the best way to determine what input metrics
affect a company’s NSM.

Take Postmates, a restaurant delivery service, for example.
Their North Star Metric is the number of daily meals delivered.
Postmates might establish that a metric higher in the funnel,
like restaurant page views, is an indicator of daily deliveries.
They may also determine that the number of page views is
affected by the quality of search results, with no results
being a worst-case scenario for a customer. With that in
mind, Postmates could run an experiment to show additional
restaurant recommendations whenever a customer’s search
comes up empty. The company could then measure whether
this experience results in more restaurant page views, and
ultimately, more meals delivered--the North Star Metric.

In the end, it’s vitally important for every team member across
product, analytics, and engineering to be in agreement about
the team’s core metrics for success.

http://www.google.com
http://www.optimizely.com/resources/build-vs-buy/
http://microsoft.com
http://amazon.com
http://blog.growthhackers.com/what-is-a-north-star-metric-b31a8512923f

8

Your feature roadmap is
your testing roadmap
Development teams frequently mention that they have
difficulty thinking up ideas for experiments. They feel they
would do better if they had an experimentation roadmap.
But a special roadmap isn’t necessarily the answer. In
truth, a team’s feature roadmap can and should be its
experimentation roadmap. This is precisely what is
meant by “experimentation-driven product development.”
A core part of every sprint process should be to decide
when to attach experiments to new features and feature
updates. For riskier features, it’s helpful to experiment on
a small portion of users before rolling the feature out for
the entire customer base.

Leading software companies almost always test new
features on a portion of their audience so they can
assess its performance before launching it. Facebook,
for instance, commonly launches new products to a
small percentage of users in remote countries such as
New Zealand. They then measure the launch’s impact
on core metrics before scaling to additional markets.
By starting small, they learn quickly without risking
a major backlash from a broader customer base.
Whenever possible, software teams should launch
features using a similar approach.

 FOR RISKIER FEATURES, START
BY EXPERIMENTING ON A SMALL
PORTION OF YOUR AUDIENCE BEFORE
ROLLING OUT TO 100% OF PRODUCTION.

PUTTING EXPERIMENTATION
AT THE CORE OF YOUR
RELEASE PROCESS

http://www.economist.com/news/business/21651858-small-technophile-country-great-place-test-digital-products-kiwis-guinea-pigs

9

Experimentation typically involves inserting conditionals
into the codebase. This can result in technical debt. To
mitigate this debt, teams should implement a regular
interval during which they clean up the code generated
by past experiments. One easy way to do this is to insert
a story into the sprint every month, or every quarter, for
this specific purpose. To make experiments even more
impactful, it helps to rerun past variations to confirm that
current ones still perform the best.

PRIORITIZATION
Most teams are constrained by resources and can’t experiment on
every feature. When deciding which features to experiment on,
consider a few factors. First, what is the risk to business metrics if
an experiment degrades the experience? Second, which features
are likely to have the greatest impact? Third, what is the level of
effort required to implement a feature or experiment? In addition,
larger, customer-facing updates should always be rolled out as
experiments to first assess the impact.

DECISION-MAKING
Once an experiment is launched, a decision must be made at some
point to either continue the experiment or to conclude it. A robust
experimentation platform will help teams determine two things—the
point at which an experiment reaches statistical significance and the
variation that achieves the best results. In many cases, the original
version remains the best option. Yet without first testing new versions,
teams can unintentionally worsen the customer experience or
negatively impact key metrics. After finding a successful new
variation, you may be able to immediately flip a switch that directs
all traffic to that variation. In the long run, however, it’s ideal to fine
tune the software by removing all experiment and variation level
code. In the long run you’ll likely want to clean up your code and
remove experiment and variation level code.

Addressing technical debt

PUTTING EXPERIMENTATION
AT THE CORE OF YOUR
RELEASE PROCESS

10

Test Small, Test Often
Many software teams are either moving to, or have
already moved to, a faster release cycle. Some have
recently adopted Agile and are ramping up their
procedures. Others are currently experimenting with
ongoing software development. Regardless, these
progressive teams are releasing smaller, incremental
software iterations at a more frequent pace. While
it’s useful to have some bigger, riskier experiments in
the pipeline, running successive, smaller experiments
helps diversify risk. Plus, these small bets sometimes
pay huge dividends. Microsoft’s Hotmail team is
one example of this approach. They conducted a
seemingly small test in the UK to determine whether
opening Hotmail in a new tab would affect user
engagement. It did. The experiment resulted in a
nearly 9% increase in people opening Hotmail. This
same test was later replicated in the US for MSN
search results. That test led to a 5% increase in
clicks per user. Small tests can yield big gains.

 BEST-IN-CLASS TEAMS ARE
MOVING TO SMALLER, INCREMENTAL
BUILDS MORE FREQUENTLY AND YOUR
TEAM SHOULD ADOPT THE SAME
APPROACH WITH EXPERIMENTATION.

PUTTING EXPERIMENTATION
AT THE CORE OF YOUR
RELEASE PROCESS

http://hbr.org/2017/09/the-surprising-power-of-online-experiments

CHOOSING THE RIGHT
EXPERIMENTATION PLATFORM

After buying into the value of experimentation, the next question is which experimentation model to pursue. Software teams
can generally choose from three types of solutions. The first is to build a proprietary experimentation system from scratch.
The second is to modify an existing open source framework. The third option is to purchase a software-as-a-service
experimentation solution. This whitepaper doesn’t address the pros and cons of building or buying an experimentation
solution. Instead, it provides a brief primer on buying an experimentation solution. Those interested in learning about
the tradeoffs between building an experimentation solution and buying one should read “Implementing the Right
Experimentation Solution: Choosing Whether to Build or Buy.”

CHOOSING THE RIGHT
EXPERIMENTATION
PLATFORM

12

Purchasing Experimentation
as a Service
The greatest benefit of purchasing a solution vs. committing
internal resources to building one is that it allows software
developers to spend their time doing what they do best—
creating great products for their customers. Many companies
have moved from owning their own servers to adopting cloud
services providers so they can focus more intently on their
core business initiatives. Software companies are purchasing
experimentation as a service for the same reason.

Typically, the first choice when purchasing an experimentation
solution is to decide between a JavaScript-based visual editor
solution that enables running client-side website experiments
without code, or an SDK-based solution that enables server
side testing and experimentation across multiple platforms,
or a platform that enables both approaches.

Visual editor-based solution buyers should look for the ability
to write custom HTML, CSS, and JavaScript code for more
advanced testing. It’s equally important for the solution to
come with thorough documentation and additional developer
controls like a REST API.

SDK-based solutions offer software development teams
more flexibility, particularly those that feature the ability to
experiment across, web, native mobile, and server platforms.
Server-side experimentation lets teams go deeper. They can
experiment on application logic layers to test the efficacy
of new algorithms, complex redesigns, and even new features.

One critically overlooked component of experimentation
platforms is the value of statistics and real-time analytics.
Delays in getting data back from internal analytics teams
can often create a bottleneck in the experimentation
process. However, purchasing an experimentation
solution with robust, built-in analytics typically accelerates
experimentation velocity, enabling teams to run more
tests. This feature won’t take the place of an internal
analytics team, but it will perform initial assessments and
allow data scientists to concentrate on advanced analyses.

http://www.optimizely.com/resources/build-vs-buy/
http://www.optimizely.com/resources/build-vs-buy/

ENSURE SECURITY
AND PERFORMANCE

Don’t Compromise on Performance

14

Developers are responsible for ensuring the products they
build are secure and performant. Just as with any third-party
technology, experimentation solutions present several critical
security and performance considerations, especially for those
deploying client-side experimentation solutions that include
JavaScript snippets that modify the front-end experience.

Performance factors are snippet placement, snippet size,
caching frequency, plus the number and timing of events sent.
A robust experimentation solution will provide the controls
necessary for managing such factors. When measuring
performance, it’s also important to focus on measuring real
world performance such as time-to-paint metrics. Outdated
metrics like page load time won’t accurately represent a
user’s experience.

Conversely, server-side experimentation solutions typically
have fewer performance concerns. Instead, it’s wise to look for
solutions that don’t require API calls to handle traffic allocation
and splitting, but instead make randomization and traffic
splitting decisions in memory. Solutions that make API calls
or leverage reverse proxy methodologies often experience
issues under peak loads and deliver poor performance.

ENSURE
SECURITY AND
PERFORMANCE

 Placement of the snippet
 Size of the snippet
 Frequency of caching
 Number of events sent
 Timing of events sent

For client-side experimentation
solutions, the biggest factors for
performance are:

Ensuring Secure Experiments

15

Few things today are more vital that securing your technology.
Client-side experimentation solutions should provide enterprise
grade security along with compliance with standards such as
ISO, SOC, PCI, and GDPR.

For pages requiring the highest level of security—those with
sensitive financial or personal information, such as checkout
pages or credit or loan application pages—teams can use a
PCI compliant client-side solution or use server-side testing.

ENSURE
SECURITY AND
PERFORMANCE

 TLS-Based authentication
 2-factor authentication
 Single-Sign On capabilities
 Encrypted communications

Key security features include:

Adopting any new system will require some learning and additional work. But the upside is undeniable. Embracing
experimentation-driven product development will make your team more innovative, your business more agile, and
your customers more satisfied.

About Optimizely
Optimizely is a digital experience optimization platform that enables product development teams to quickly experiment
and roll out features across every platform.

VISIT OUR WEBSITE, AND DISCOVER THE MANY WAYS IN WHICH YOUR BUSINESS
CAN BENEFIT FROM EXPERIMENTATION.

http://www.optimizely.com

